top of page

Hierarchical Clustering

Hierarchical clustering, also known as hierarchical cluster analysis, is an algorithm that groups similar objects into groups called clusters. The endpoint is a set of clusters, where each cluster is distinct from each other cluster, and the objects within each cluster are broadly similar to each other.

I have performed hierarchical clustering using WARDS METHOD....

This method involves an agglomerative clustering algorithm. It will start out at the leaves and work its way to the trunk, so to speak. It looks for groups of leaves that form into branches, the branches into limbs and eventually into the trunk. Ward's method starts out with n clusters of size 1 and continues until all the observations are included into one cluster.

dendo.png

© 2020 by Raj Kumar Beniwal. Proudly created with Wix.com

bottom of page